If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+14x-87=0
a = 5; b = 14; c = -87;
Δ = b2-4ac
Δ = 142-4·5·(-87)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-44}{2*5}=\frac{-58}{10} =-5+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+44}{2*5}=\frac{30}{10} =3 $
| 38-8x=3+5(7x+7) | | 80x=30x | | 8x+21=x-21 | | 8x=21=x-21 | | 8x=90-1x | | 3(x-6)+5=-31 | | 8x=1x-90 | | x/4+x/3+1=x/2 | | 3-(8n-4)=1n | | -7x+4=-7x-2 | | (Y-3z)²=0 | | 2(x-6)=x-14. | | 1+7x=5x=25 | | 8+x(x)=6+x(x+1) | | 5x-6x-x=-2x | | 6x^2+21x-25=0 | | (7x-3)=(6x+17) | | 15=p•24 | | 5-(10x-6)=16 | | X+11=20-2x | | (2x-24)+(x+5)=90 | | 6(x+6)+3=51 | | (2x+24)+(x+5)=90 | | 4p^2-2p+1=0 | | 6(x=6)+3=51 | | 3/2(2x+6)=3×+9 | | 9x-45-1x-5=4x-4 | | 7(1-p)-9(p+10)=-10p+9+10 | | Y=180+2x | | (8x-27)+(7x-4)=180 | | 5+x=47;x=42 | | -(9-4x)=-9+2(5x-6) |